
CsIow – a C# library for the IOWarrior

CsIow – a C# library for the IOWarrior
CsIow is a .NET library for the IOWarrior produced by CodeMercenaries Hard- und
Software GmbH. It is entirely written in C# (with calls into unmanaged code of course).
The library was developed with the Visual C# Express 2005 Edition.

Applications to be developed with the library must meet the following restrictions :
 The Operating System must be Windows XP or newer. There is no and never will

be support for Windows98, Win NT etc.
 The .Net Framework 2.0 must be installed
 Your application has to be a Windows Forms application. There is no and never will

be support for pure console applications.

As a developer you should be familiar with (or willing to read up on) the following
programming topics
 Threads
 Implementing Interfaces
 Delegates

I also expect that you read the datasheet for the IOWarrior.

Here is a short rundown of the features implemented in the library
 Dynamic plug/unplug notification for IOWarriors through callback-functions
 Dynamic data notification through callback-functions
 Optional filtering for specific IOWarriors
 Optional filtering of reports
 Open source, non-restrictive license

Where to get help

After you have read this document thoroughly and didn't find an answer to your question,
bug reports, comments and feature requests should be addressed to <iow@wayoda.org>

Licensing Terms for the CsIow-library
Copyright (©) 2006 by Eberhard Fahle <e.fahle@wayoda.org>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHOR OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Page 1 of 18

mailto:iow@wayoda.org
mailto:e.fahle@wayoda.org

CsIow – a C# library for the IOWarrior

1 Overview
Everything in the library is callback-driven. There are for instance no functions for
retrieving a list of currently connected IOWarriors, or functions for reading reports from an
IOWarrior. All you have to do is to create a class that implements a specific Interface and
then wait until the library calls you back whenever something happens.

1.1 The org.wayoda.csiow namespace
All the classes and interfaces of the library are defined in the namespace
org.wayoda.csiow . An application gets access to the library through the
using org.wayoda.csiow;
statement. (I guess you know that you have to add a reference to the file CsIow.dll
located bin-directory of the project.)
Please, do not develop your application in namespace org.wayoda.csiow. The Intellisense
feature of Visual Studio would reveal all internal classes and methods of the CsIow Library
to your application. Calling a method that is declared internal inside the org.wayoda.csiow
namespace will most likely mess up your application. There are no hidden features or
anything else your application could benefit from.

1.2 Overview of classes/interfaces
The library exposes 6 classes and 2 interfaces to your application-code. Here's a short
description for each of them (more detailed information and code examples later on in this
document):
class IowManager

This class handles everything about device-detection, i.e. plug/unplug of IOWarriors.
You will have to register a class that implements interface IowDeviceChangeListener
with the manager, and it will notify you whenever a new IOWarrior is plugged in, or an
existing device is unplugged.

interface IowDeviceChangeListener

You have to implement this interface in one of your own application-classes. After you
have registered your class with the IowManager, you will be notified for device-changes
through a callback into the methods defined by the interface.

class IowDeviceFilter

This class manages a list of filters based on the product-id and/or serial-number of the
IOWarriors. Setting up the filter allows you to get callbacks only for specific IOWarriors,
ignoring all others that do not match the criteria in the filter.

class IOWarrior

An instance of this class represents an IOWarrior found on your system. As long as it is
not unplugged, you can write new reports to it. Reports coming in from the device will be
sent to application-classes implementing the interface IowReportListener after they
have been registered with the IOWarrior. You can register more than one listener with
an IOWarrior and there are ways to filter the types of reports sent to you. You can for
instance add one listener that receives all updates on the status of the IO-Pins and

Page 2 of 18

CsIow – a C# library for the IOWarrior

another one listening only for changes on a Switch-Matrix. There are also several
functions for retrieving static device capabilities, like the product-id, serial-number,
revision etc.

interface IowReportListener

You have to implement this interface in one of your own application-classes. After you
have registered your class with an IOWarrior, you will be notified for new reports sent by
the device and also when the IOWarrior was unplugged.

class IowReport

This class that encapsulates the data that is exchanged between your application and
the IOWarriors. The datasheet of the IOWarrior explains exactly the how many bytes
make up a report to be written to an IOWarrior or read from it. This number varies along
the different products and modes of the IOWarriors. In the CsIow-Lib the IOWarrior
class will take care of this problem. All you have to do is create a new IowReport, fill in
the report-id and data, and send it off to the device.

class IowError

Things go wrong. If that happens we return an instance of this class which provides
some information why the operation failed.

class IowSpecialMode

From the datasheet of the IOWarrior you already know about the different SpecialMode-
commands it supports. You also read that not very IOWarrior (or even a different
revision of the same product) supports the same SpecialModes. The class implements
a few typed constants that can be used for checking which SpecialModes are supported
by a specific device, which type of SpecialMode an IowReport belongs to, or for filtering
reports in an IowReportListener.

Page 3 of 18

CsIow – a C# library for the IOWarrior

2 Handling plug/unplug events for IOWarriors
The first thing your application has to do is setting up a listener for device changes that
gets called whenever a new IOWarrior gets plugged in or is removed. The most basic one
I can think of, looks like this

public class MyDeviceListner : IowDeviceChangeListener {
public MyDeviceListener() {
}

public void deviceAdd(IOWarrior iow) {
Console.WriteLine(“Add : “+iow);

}

public void deviceRemoved(IOWarrior iow) {
Console.WriteLine(“Removed : “+iow);

}
}

All it does is print out a message when an IOWarrior is plugged in or removed in the two
methods which implement the interface IowDeviceChangeListener. Your application will
only need a single instance of this class because only one Listener can be registered with
the library in the static method IowManager.open().
Here's how to register our listener with the library

IowError err;
MyDeviceListener devListener=new MyDeviceListener();

err=IowManager.open(devListener);
if(err!=IowError.OK) {

Console.WriteLine(“Error in open : “+err.getMessage());
....

That's it. Create the listener and hand it over to the open() call. I put in a bit of error
handling in case things go wrong. An instance of class IowError is returned from the
open() call. If everything went fine the constant IowError.OK is returned. Otherwise a new
Instance of IowError was created inside the library and you can request some information
about the error that occurred.
If the method returns an error!=IowError.OK you're already done, because it signals
something went seriously wrong and your application will never be able to access any
IOWarriors.
Instead of returning an error the IowManager.open() will throw Exceptions for all of the
following situations.
The OperatingSystem is not Windows XP or newer

A System.PlatformNotSupportedException will be thrown. CsIow uses some OS
libraries not available on older platforms. So you cannot create an application that runs
on one of these platforms.

You called IowManager.open() twice without closing it in between
A System.InvalidOperationException is thrown. Each successful open() call must be
followed by a close() call later (when you are done with the library).

Page 4 of 18

CsIow – a C# library for the IOWarrior

You called IowManager.open() with a null-argument for the listener
Obviously the library needs someone to talk to on device changes, so this would be a
serious programming error, and a System.ArgumentNullException is therefore thrown.

But lets assume the open() call was successful. This is what happens inside the library:
All IOWarriors currently connected will be opened and for each device your listeners
deviceAdd(IOWarrior iow) method will be called.
The library will create an internal handler that will call your deviceAdd() or
deviceRemoved() methods whenever an IOWarrior is plugged in or removed later. This
handler will be active until your application closes the library. So your listener must be
prepared to handle new devices every time between the IowManager.open() call until the
IowManager.close() call.
If there are no IOWarriors connected by the time IowManger.open() is called, this is not
regarded as an error. The method will still return IowError.OK. If your application relies on
the presence of a specific device, it is your task to tell the user to plug it in.

2.1 Filtering for specific IOWarriors
With the code shown so far your application will get an deviceAdd() event for every
IOWarrior plugged into your computer. If your application relies on the presence of a
specific IOWarrior or maybe supports only the IOWarrior24 you can setup a filter for
devices before you call IowManager.open(). An example:
You have 2 IOWarriors on your desktop
a) An IOWarrior24 with a serial-number of 0x123 to which an LCD-Display is connected
b) An IOWarrior56 with a serial-number of 0x456 that does some AD-conversion
Now you want to write an application for device a that prints the system status to the LCD.
As your are not interested in the IOWarrior56 you can setup a device-filter for the library

IowDeviceFilter filter=new IowDeviceFilter;
filter.add(IOWarrior.PID_IOW24,0x123);

MyDeviceListner devListener=new MyDeviceListner();

IowError err=IowManager.open(devListener,filter);

Here we created a new filter for the library which will force it to ignore all IOWarriors but
the IOWarrior24 with the serial-number 0x123. You will never get a callback to your
listener for the IOWarrior56 that is also plugged into your computer. You can add more
than just one IOWarrior to the filter. If you happen to have 3 IOWarriors and want to use 2
of them just call filter.add() again with the product-id and serial-number for the second
device.
(By the way : as you see in the code, all product-id's for IOWarriors are available as static
constants in the class IOWarrior.)

Page 5 of 18

CsIow – a C# library for the IOWarrior

If you want to setup you filter-conditions to accept all IOWarriors of a specific product-type
there is the addProduct(int) method in class IowDeviceFilter

IowDeviceFilter filter=new IowDeviceFilter;
filter.addProduct(IOWarrior.PID_IOW56);

That would make the library accept only IOWarrior56 devices.
If IowManager.open(devListner,filter) is called with an empty filter (no device/product
added to it) or null, the library does not regard this as an error. It will simply accepts and
reports every IOWarrior found.

2.2 Closing the library
There is only one thing to say about this : You have to do it!
You cannot simply exit your application and hope that the library takes care of itself. There
might be threads running inside the library which will not terminate until
IowManager.close() is called. Consequently your application might not be able to
shutdown. There are also resources which are only freed inside the close() call. In
close() your device listeners deviceRemoved() method will be called for each IOWarrior.
So whatever your code did with the IOWarrior, it will know that the device is not available
any more.

2.3 Inside the device event handler
Sorry, here comes the tough part!
Each event for device plug/unplug is delivered in a new Thread. The library can not and
does not care what you do inside this Thread. It also does not care wether the Thread that
was started for the device will ever terminate. The library will not wait for it to die (fire-and-
forget)!
From your applications point of view this is what happens
 The library detects that a new IOWarrior was plugged in

 It creates a new instance of class IOWarrior

 It starts up a new Thread that calls the deviceAdd(IOWarrior iow) method of your
listener for device changes

Now it's up to you to decide what you do inside your handlers callback. The simple
example from above is just perfect. It prints a message to the console an returns. The
Thread that was started from the library will terminate right after deviceAdd() returned.

Page 6 of 18

CsIow – a C# library for the IOWarrior

But it is very easy to turn the code from above into a very bad example:
public class MyDeviceListner : IowDeviceChangeListener {

public MyDeviceListener() {
}

public void deviceAdd(IOWarrior iow) {
Console.WriteLine(“Add : “+iow);
for(int i=0;i<3600;i++) {

Thread.Sleep(1000);
Console.WriteLine(“I'm still alive!”);

}
}

public void deviceRemoved(IOWarrior iow) {
Console.WriteLine(“Removed : “+iow);

}
}

Now the deviceAdd() message is printed like before but then the Thread will go on for an
hour printing “I'm still alive!” every second. The library does not stop the Thread from doing
so. If your applications code does not stop the Thread by calling Abort(), your application
will run for one hour no matter how often the user clicked the close button on your window.
So there are obviously things you cannot put into the event handler. A rough guideline for
successful programming goes like this:
 Terminate quickly. Lengthy operations should be run in a new Thread which you

control inside your applications code.
 Save the IOWarrior object for later use inside one of your own datastructures.

 If you want to call methods for a component that was derived from
Windows.Forms.Control you have to use the Invoke() method of your component.

The first point should be obvious from the example above.
The second point is based on the fact that you will never see this specific IOWarrior again,
once you returned from deviceAdd(). The IowManager class does not implement methods
that lets your application retrieve a list of devices later on. IOWarriors are reported once,
that's it.
The explanation for the third point can be found in every serious book about programming
.NET applications. Every UserControl in an application can only be accessed from the
Thread in which it was created. Since the event handler runs in its own Thread, you will
get an exception if you try to call a method of an UserControl. In the .NET environment this
problem is resolved by calling the Invoke() method of the Control.
A simple example should clarify this. We want add every IOWarrior that is reported in the
callback to a ListBox-Control located on the applications main form. If the IOWarrior is
unplugged later, it shall be removed from the list in the deviceRemoved() handler.
Since we must use Invoke we have to define a few Delegates for the ListBox-methods we
need to call:

//used to access ListBox.Items.Add
delegate int AddIowToListBox(IOWarrior iow);
//used to access ListBox.Items.RemoveAt
delegate void RemoveIowFromListBox(int i);

Page 7 of 18

CsIow – a C# library for the IOWarrior

Here is the code for the event handlers to make this work
// a ListBox “deviceListBox” has already been added to our main form

public void deviceAdd(IOWarrior iow) {
//Create a delegate for the method we want to call
AddIowToListBox del=new AddIowToListBox(deviceListBox.Items.Add);
//call the listbox function with our IOWarrior
deviceListBox.Invoke(del, new Object [] {iow});

}

public void deviceRemoved(IOWarrior iow) {
//create the delegate
RemoveIowFromListBox del=newRemoveIowFromListBox(deviceListBox.Items.RemoveAt);
//iterate through the items in the listbox
for(int i=0;i<deviceListBox.Items.Count;i++) {

// The test for the device can be done without
// Invoke, because the visual appearance of the
// control is unchanged
if(iow.Equals(deviceListBox.Items[i])) {

//Here we need to use Invoke for device removal
deviceListBox.Invoke(ris, new object[] { i });

}
}

}

This it all it takes to fulfill the 3 requirements for the event handlers.
 Both methods return right after the IOWarrior was added to the ListBox (or

removed from it).
 If we want to do something with the IOWarrior later, we can request the device from

the ListBox where it is stored.
 Using Invoke() puts the calls to the ListBox on the main thread of the application.

The example works fine since adding the IOWarrior to the ListBox-Control doesn't take
very long. But our handler still waits for the deviceListBox.Invoke() method to return.
If we had to do something even more time-consuming in the handler, we could have used
BeginInvoke() instead, which puts the call to the ListBox-methods into a new thread that
executes on the main thread of the application.

Page 8 of 18

CsIow – a C# library for the IOWarrior

3 Operating an IOWarrior
When your device event handler is called with a new IOWarrior, it provides you with a fully
functional object. If you look at the source code of the library you will notice that class
IOWarrior does not expose a public constructor to your applications code. IOWarriors are
created inside the library code and then reported to your application when they are ready
for use. There is also no method for closing an IOWarrior. Your application should simply
forget about the device when you're done with it.

3.1 What kind of device did I get ?
This will obviously the first question that has to be coped with in your application. The
IOWarrior class provides the usual methods for getting the product-id, serial-number and
revision-number of the IOWarrior. But since the IOWarrior class provides you only with a
unified object no matter what kind of product from the IOWarrior-family is actually
represented, there are a few more methods:

int getReportSizeIO()
int getReportSizeSM()

These two methods tell you how many bytes make up an report to/from the IO-Pins and
SpecialMode functions. Since the library uses only IowReports for data exchange with
the device, your application needs to know how many bytes in an IowReport have to be
processed on reads and writes.

int getReportLatency()
Tells you the maximum data rate at which reports can be send by the device to your
application.

IowSpecialMode [] getSupportedSpecialModes()
This method returns an array of all the SpecialModes that are available on this device.
An IowSpecialMode-object is just one of the typed constants defined in class
IowSpecialMode. If you want to check if your device supports a SwitchMatrix you would
have to retrieve the array and test wether the object IowSpecialMode.SWITCH_MATRIX is
found in the array.

bool isSupportedMode(IowSpecialMode mode)
Makes the previous test even more easy. Just call this function with one of the
constants from class IowSpecialMode to find out if it is supported by your device.

bool isConnected()
Simply tests if your device is still connected (i.e. not unplugged).

3.2 IowReport
Before we get to the read and write functions I have to introduce class IowReport. The
basic structure for all data that gets written to or read from an IOWarrior is an array of
bytes with the report-id in the first element and the actual data following. The size of a
report varies along the different products. The library uses a unified datastructure for all
devices. An IowReport provides you with enough memory for even the biggest report to be
exchanged with an IOWarrior (that is 64 bytes for an IOWarrior56). Since the library is well
aware how many of the bytes in an IowReport have to be send to the device, you don't
have specify the length of a report.

Page 9 of 18

CsIow – a C# library for the IOWarrior

The datasheet of the IOWarrior mentions two distinctive pipes to which reports get written.
If you are familiar with the IowKit-Library from CodeMercs you know that you always have
to specify one of these pipes on reads and writes. In the CsIow-Library I dropped the
concept of pipes. Writing to the IO-Pins is treated as just another SpecialMode with the
report-id set to 0x00. (Consequently there is also a typed constant IowSpecialMode.IO). So
if you want your data to go to the IO-Pins set the report-id to 0x00 in the IowReport. For
reports coming in from the device the same applies. If the report carries a report-id of 0x00
it came from the IO-Pins.
There are several constructors for an IowReport that initialize the data in it and also setters
and getters for the data. I guess the most useful feature is the index-operator that can be
used on the individual bytes in the report. Just keep in mind that the byte at index 0 in the
report is the report-id.

//Create a report with every byte set to 0x00
IowReport rep=new IowReport();
rep[0]=0x0C; //set the report-id for RemoteControl anIow24
rep[1]=0x01; //and switch the specialmode on

3.3 Writing to the device
This is simply done by creating an IowReport with the data you want to send and then
calling the write(IowReport rep) method of your device. If you want to write more than
one report to the device with a single call, you can create an array of reports and send
them off with the write(IowReport [] reps) call. Both calls block until the data is
successfully written or an error is detected. The return value is an instance of class
IowError. A successful write will always return the constant IowError.OK. Otherwise you
will have to look at the type of error that was reported :

// iow is the device we want to write the data to

// lets set all IO-Pin to LOW
IowReport rep=new IowReport();
IowError err=iow.write(rep);
if(err=IowError.OK)

Console.WriteLine(“Success”);
else if(err.getType() == IowError.Type.WRITE_FAILED)

Console.WriteLine(“Write failed because : “+err.getMessage());
else if(err.getType() == IowError.Type.WRITE_UNSUPPORTED_MODE)

....
else if(....

The getType() method of class IowError will return one of the following constants:
IowError.Type.NO_ERROR

The report was successfully written to the device.
IowError.Type.WRITE_NULL

Error in your application code. You tried to write an IowReport that is null.
IowError.Type.WRITE_UNSUPPORTED_MODE

Error in your application code. You tried to write an IowReport with a report-id for a
SpecialMode that is not available on this device. You would see this error for instance if
you try to enable the KEY_MATRIX mode on an IOWarrior24.

Page 10 of 18

CsIow – a C# library for the IOWarrior

IowError.Type.UNPLUGGED

The library was unable to deliver the report, because the device is already unplugged.
IowError.Type.WRITE_TIMEOUT

The library sets an internal timeout of 5 seconds for each write. The write did not
complete inside this limit.

IowError.Type.WRITE_FAILED

Somehow the write failed!? This sounds rather vague, but our library is not able to cope
with this error in a more detailed way. You can inspect the value returned from
err.getWin32Code() if you want to handle it in your applications code.

The write(IowReport [] reps) method for an array of reports will either return
IowError.OK if all reports were successfully written, or the error for the first report it failed
to write. You will not be able to know how many reports (if any) actually made it to the
device though.

3.4 Reading from the device
Reading is a bit more complicated than writing, but the whole thing is more or less a
repetition of the concepts explained in the chapter about handling device changes.
Here again you will have to setup a class that implements an interface, and then register
that class with one (or more) IOWarrior(s).
The interface IowReportListener defines to methods :
void reportUpdate(IowReport rep, IOWarrior iow)

This method will be called from the IOWarrior whenever a new report came in from the
device. Since you can register your class with more than one IOWarrior the callback will
provide you not only with the data itself but also with the device from which the data is
reported.

void deviceRemoved(IOWarrior iow)

This will be called from one of the IOWarriors to which your class was registered. It
simply tells you that this specific device was unplugged and no more reports are to be
expected from it.

A basic implementation for an IowReportListener looks like this
public class MyReportListner : IowReportListener {

public MyReportListener() {
}

public void reportUpdate(IowReport rep, IOWarrior iow) {
Console.WriteLine(“New Report from : “+iow);
Console.WriteLine(rep.ToString());

}

public void deviceRemoved(IOWarrior iow) {
Console.WriteLine(“Removed : “+iow);

}
}

Page 11 of 18

CsIow – a C# library for the IOWarrior

It should be obvious what our listener does.
Now we have to register our class with a device. The class IOWarrior implements the
method addReportListener(IowReportListener listener,IowSpecialMode [] modes) for
this. The first argument to the call is the listener we just created, or to be more specific: an
instance of a class that implements interface IowReportListener. The second argument,
an array of IowSpecialMode constants, allows you to register only for specific reports in
which you are interested.

//this one will be called on IO-Pin changes
MyReportListener forIO=new MyReportListener();
IowSpecialMode [] IOmode= { IowSpecialMode.IO };

//and this one for the switch-matrix only
MyReportListener forSwitches=new MyReportListener();
IowSpecialMode [] Switchmode= { IowSpecialMode.SWITCH_MATRIX };

//they are both added to the same device
iow.addReportListener(forIO,IOmode);
iow.addReportListener(forSwitches,Switchmode);

Here we create two instances of our listener class. Both are registered with the same
IOWarrior. The first one will notified when one of the IO-Pins changes, the second one will
be called for SwitchMatrix events only. Since we didn't register any more listener all other
reports will be silently discarded inside the library.
If you want to receive every type of report coming in from the device, use null or an empty
array for the second argument of addReportListener().
If you are tired of waiting for reports from an IOWarrior, the
removeIowListener(IowReportListener listener) method allows you to unregister you
class from a device.
If an IOWarrior you have registered with is unplugged, the deviceRemoved() method of
your handler is called. You don't have to unregister yourself on unplug. The IOWarrior will
forget your listener after the final deviceRemoved() call has returned.

3.4.1 Inside the report event handler
Here are the restrictions for your applications code inside the callback methods for reports.
 Terminate quickly. Lengthy operations should be run in a new Thread which you

control inside your applications code.
 If you want to call methods for a component that was derived from

Windows.Forms.Control you have to use the Invoke() method of your component.
Sounds familiar, here's the background story.
When a new instance of class IOWarrior is created the library starts an internal Thread
that waits for new reports from the device. As soon as a new report is available the
reportUpdate(IowReport rep, IOWarrior iow) methods of all registered
IowReportListeners will be called. At this point the Thread waits for the callbacks of your
application code to return. The Operating System provides an internal buffer for reports
from the device, but if your handlers code blocks for too long, you might loose some
reports from the IOWarrior without notice.

Page 12 of 18

CsIow – a C# library for the IOWarrior

3.4.2 getIOStatus() Handle with care!
The only method from the class IOWarrior we haven't mentioned yet is getIOStatus(). It
returns the last IowReport read from the IO-Pins of the device. In the previous chapter we
saw that reading from the device can be delayed or even stopped if the code in your report
event handler blocks for too long. This affects getIOStatus() too, since the report to be
returned, is updated from the same Thread that calling into your event handlers.

Page 13 of 18

CsIow – a C# library for the IOWarrior

4 CsDemo
I created a small demo project CsDemo. The application opens a window which displays all
connected IOWarriors in a ListBox. A report can be send to the selected device by editing
the data-fields at the bottom of the window. Every report that comes in from any of the
devices is printed into a TextBox.
There are only three classes in the project:
HexTextBox

A simple class extending TextBox that restricts the users input to hex values. This class
does not use any functionality from the CsIow library.
WritePanel

A user control that provides 64 HexTextBox fields and a write button. The only relation with
the CsIow library is that a new IowReport is created from the textbox values when the user
clicks the write button. A delegate from the applications main form is called with this report
and the data is written to the currently selected device.
Form1

This is the applications main form and all code dealing with the IOWarriors is implemented
here.
Let's have a look at the code of Form1 to see how the library is put into practice.
At the top of the file we include our library to the project and set the namespace to
something unequal to he libraries namespace

using org.wayoda.csiow;
namespace CsDemo

Since we want to handle all callbacks from the library in the forms code we need a class
that implements the interfaces IowDeviceChangeListener and IowReportListener. The
statement

public partial class Form1 : Form, IowDeviceChangeListener,IowReportListener {

shows that all the event handlers will be defined inside the forms code itself.
Now we need a place to open and close the library. The Form1_Load event is a good place
to do that:

private void Form1_Load(object sender, EventArgs e) {
IowDeviceFilter f=new IowDeviceFilter();
//uncomment the next line if you want to see only IOWarrior24's
//f.addProduct(IOWarrior.PID_IOW24);
IowError err;
err=IowManager.open(this,f);
if(err!=IowError.OK) {

StringBuilder sb=new StringBuilder();
sb.AppendLine("Opening the CsIow-Lib failed");
sb.AppendLine("("+err.ToString()+")");
MessageBox.Show(sb.ToString(), "SimpleIow Failed!");
Application.Exit();

}
}

Page 14 of 18

CsIow – a C# library for the IOWarrior

We create a new IowDeviceFilter but we do not set any conditions for it. For the demo
we simply accept every IOWarrior that gets plugged in.
In the IowManager.open(this,f) call we register the main form itself as the listener for
device changes.
The library will finally be closed when the user closes our form.

private void Form1_FormClosing(object sender, FormClosingEventArgs e) {
IowManager.close();

}

Now we need to implement the callbacks for device changes defined in interface
IowDeviceChangeListener.

public void deviceAdd(IOWarrior iow) {
AddIowToControl ais=new AddIowToControl(deviceListBox.Items.Add);
deviceListBox.Invoke(ais, new Object [] {iow});
iow.addReportListener(this, null);

}

The first two lines in the handler create a delegate and use the Invoke() call of the
ListBox to add our new device to that listbox.
The statement iow.addReportListener(this, null) registers the form as the eventhandler
for all reports that come in from the device. Since we want to register for every type of
report coming in, the filter for IowSpecialMode is null.
Here's the method that handles unplug events from the library

public void deviceRemoved(IOWarrior iow) {
RemoveIowFromControl ris=new RemoveIowFromControl(deviceListBox.

Items.RemoveAt);
lock(deviceListBox) {

for(int i=0;i<deviceListBox.Items.Count;i++) {
// The test for the device can be done without
// Invoke, because the visual appearance of the
// control is unchanged
if(iow.Equals(deviceListBox.Items[i])) {

//Here we need to use Invoke for device removal
deviceListBox.Invoke(ris, new object[] { i });

}
}

}
}

Again we create a delegate to access the ListBox. Than we iterate through the items in
the listbox and remove the IOWarrior that was unplugged. As you see not every method
from the ListBox needs to be wrapped with Invoke. We have access to the number of
items in the list and can also check the items in the list against the IOWarrior that was
removed. But actually removing the device will repaint the listbox on the window. So that
must be wrapped by Invoke.
That's all we had to implement for device plug/unplug events. Lets get on to the reports
send by IOWarriors.
I guess you remember that interface IowReportListener also defines the method
deviceRemoved(IOWarrior iow). But in our example we don't have to implement it a
second time because both interfaces use the same signature. Our method from above

Page 15 of 18

CsIow – a C# library for the IOWarrior

simply gets called twice on each removal. One call comes from the IowManager to which
we registered for device changes. The second one comes from the device itself. Don't
expect these calls to come in any order. They are coming from different threads. Since
both calls change the items in the ListBox we protect access to the control by locking it.
The first call (thread) coming in will have exclusive access to the list. The second call will
have to wait until the first one is done with the list.
Reports coming in from the device will simply be printed to a TextBox on the window.

public void reportUpdate(IowReport rep, IOWarrior iow) {
// Create a nice message to be printed in the ReportTextBox
int reportLength;
String dev=iow.ToString();
StringBuilder sb=new StringBuilder();
sb.Append("R ");
sb.Append(iow.getProductName());
sb.Append(" ");
sb.AppendFormat("{0:X} ", iow.getSerialNumber());
if(rep.getSpecialMode()==IowSpecialMode.IO)

reportLength=iow.getReportSizeIO();
else

reportLength=iow.getReportSizeSM();
for(int i=0;i<reportLength;i++) {

sb.AppendFormat("{0:X2} ", rep[i]);
}
sb.Append("\n");
// And now add this text using a delegate and Invoke again.
AddReportToControl adds=new AddReportToControl(ReportList.AppendText);
ReportList.Invoke(adds, new object[] { sb.ToString() });

}

Inside the method we create a nicely formatted String for the data just read. We put the
name of the device and its serial-number in front. Then we print the individual bytes from
the report. As you know an IowReport will always provide you with 64 bytes of data, but
not all of them carry any meaning in a report. Let's say the report came from the IO-Pins of
an IOWarrior40. For this device only the first 5 bytes in the IowReport make up the whole
data. So we want to print out only these 5 bytes on the window. This is taken care of by
requesting the type of SpecialMode from the report itself. Than we ask the device how
many bytes make up a report of the specific type. Only these bytes will than actually be
printed on the form. Adding the message to the textbox has again to be wrapped by
Invoke().
The only thing that's missing now is a method that writes a new report to one of the
devices.

public void writeToIow(IowReport rep) {
IowError werr;
IOWarrior iow=deviceListBox.SelectedItem as IOWarrior;
if(iow!=null) {
werr=iow.write(rep);
if(werr!=IowError.OK) {

StringBuilder sb=new StringBuilder();
sb.Append("Write for device ");sb.Append(iow.getProductName());
sb.Append(" ");sb.Append(iow.getSerialNumberString());
sb.AppendLine(" failed!");sb.AppendLine(werr.getMessage());
MessageBox.Show(sb.ToString(), "Write Error");

}
}

Page 16 of 18

CsIow – a C# library for the IOWarrior

The method is called from the WritePanel-class which created the IowReport when the
user clicked the write-button. It retrieves the currently selected IOWarrior from the list of
devices and writes the report to it. If an error is detected we show a MessageBox with a
description of the error.
That was all we had to implement concerning the IOWarriors. I didn't show you the
delegates we used for Invoke() on the ListBox and TextBox but I guess you find your way
around by looking at the sources.
The binary for the demo can be installed from directory publish in the projects source-tree
(or it can be rebuild and started in the debugger, if you prefer that.)
I also packaged the CsIow-library DLL into the projects source-tree and added a reference
to it.
In you own projects you should add a reference to the CsIow-library project itself so you're
always using the latest version of the library.

Page 17 of 18

CsIow – a C# library for the IOWarrior

Revision History of this document:

12/11/2006 First public release

CsIow library changelog

12/11/2006 Version 0.1.0.0 First public release

Page 18 of 18

	CsIow – a C# library for the IOWarrior
	Where to get help
	Licensing Terms for the CsIow-library

	1 Overview
	1.1 The org.wayoda.csiow namespace
	1.2 Overview of classes/interfaces
	2 Handling plug/unplug events for IOWarriors
	2.1 Filtering for specific IOWarriors
	2.2 Closing the library
	2.3 Inside the device event handler
	3 Operating an IOWarrior
	3.1 What kind of device did I get ?
	3.2 IowReport
	3.3 Writing to the device
	3.4 Reading from the device
	3.4.1 Inside the report event handler
	3.4.2 getIOStatus() Handle with care!
	4 CsDemo
	Revision History of this document:
	CsIow library changelog

